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1. Introduction

1.1 Research into Advanced Mathematical Behaviour 

Advanced mathematical thinking (Tall, 1991) and tertiary level mathematics education research 

(Selden & Selden, 2002) have only recently become established research fields. Research into the 

working practices of mathematicians is still rare. In a recent article, I observed that 

unlike most other subjects, mathematical activity resides almost entirely within the 

cognitive processes of a mathematics practitioner and is therefore difficult to 

characterise. Despite recent interest, the nature of advanced mathematical activity 

remains something of a black box to educational researchers (Samuels, 2012, p. 1). 

Apart from major mathematical discoveries, such as Wiles’ experience of proving Fermat’s Last 

Theorem (Singh, 1997), mathematicians’ rich and profound experiences of doing advanced 

mathematics have generally lacked a language and vehicle of expression. In approximately the last 

150 years, the discourse of the mathematics research community has focused almost entirely upon 

the product of mathematical activity rather than its process (Science Festival Foundation, 2013; 

Solomon & O’Neill, 1998), leading me to express my sense of alienation from the product of my 

mathematical labour (Samuels, 1993). Assuming I am not alone, I hope that the data capturing 

techniques presented in this paper will provide mathematicians with a variety of means to share 

what they are thinking as they create and communicate advanced mathematics. 

1.2 Purpose, Perspective and Outline 

The purpose of this paper is to present new techniques for capturing critical thinking in the process 

of creating and writing up advanced mathematics. The aim is to complement, rather than challenge, 

the standard, product-orientated genre of academic mathematical discourse. The proposed 

techniques presented here are based neither on the standard data capturing techniques used in 

previous research into mathematical behaviour nor on a requirement that mathematicians have the 

additional identity and capability of being researchers in mathematical behaviour. Furthermore, 

these techniques do not assume that the research will be initiated by mathematical behavioural 

researchers observing mathematicians and deriving insight into their thinking processes from these 

observations which have an inherent risk of being invalid (which will be discussed later). Instead, 

they provide a means for mathematicians to capture and communicate rich data into their actual 

working practices. 

Four techniques are introduced with examples from my own research into analytical fluid 

mechanics: plan writing, concept mapping, activity transcripts, and annotated drafts and 

transcripts. Each of these techniques is fairly easy to use and unobtrusive as they do not involve 

another researcher being present, or capturing data in a potentially distracting manner, or 

mathematicians spending additional time participating in contrived activities outside of their 

DOI: 10.37514/DBH-J.2014.2.1.02

https://doi.org/10.37514/DBH-J.2014.2.1.02


Double Helix, Vol 2, 2014 

2 
 

normal working practices. They also cover different stages in the process of creating mathematics 

and composing mathematical writing, as discussed below. 

 Given that I am a research mathematician, and one of the goals of this paper is to promote 

a division of labour between research mathematicians and researchers in mathematical behaviour, 

I have not attempted to analyse my own critical thinking from my mathematical data as this would 

contradict this division of labour. It would also create the additional problems of a lack of 

objectivity and a dual identity, setting an unhelpful precedent which I do not wish others 

necessarily to follow. The absence of analysis of the critical thinking in the examples of the 

proposed techniques provided might be viewed as a weakness of the paper in validating their merits 

relative to existing techniques. However, a more general evaluation of the proposed techniques is 

provided in Sections 3 and 4. 

 As a concession to this possible perceived weakness, the examples of the proposed 

techniques have been selected because they appear to contain critical thinking and provide 

different perspectives on the process of creating and writing up the same piece of advanced 

mathematics which other behavioural researchers may wish to analyse further. The examples are 

therefore provided more for the purpose of promoting the creation of a corpus of mathematical 

process data and encouraging future analysis, as discussed in Section 6, rather than being of direct 

interest to the average Double Helix reader. 

 This paper builds on the ideas I presented in a recent opinion piece (Samuels, 2012). In 

Section 2, the issue of critical thinking in science and mathematics is explored. In Section 3, 

existing techniques for capturing data on advanced mathematical behaviour are critiqued. In 

Section 4, in order to provide a framework for discussing these techniques, the relationship 

between the process of creating mathematics and the writing process is explored. Each proposed 

technique is then presented in turn in Section 5 with examples from my doctoral research into 

analytical fluid mechanics (Samuels, 2000). Finally, in Section 6, these proposed techniques are 

compared with existing techniques used by mathematical behavioural researchers, their utility is 

evaluated, and the possibility of creating a corpus of similar behavioural data is discussed. 

 

2. Critical Thinking in Science and Mathematics 
The development of critical thinking is widely accepted as being important within academia, but 

there is considerable disagreement over its definition. In an extensive study of university academic 

staffs’ views on the subject, Paul et al. (1997) found that “few have had any in-depth exposure to 

the research on the concept and most have only a vague understanding of what it is and what is 

involved in bringing it successfully into instruction.” Moon (2008) argued for a definition which 

emphasises utility to learners. Her literature review identified a variety of approaches: some, such 

as Gillett (2014), defined critical thinking as the application of Bloom’s (1956) taxonomy 

(understanding, analysis, synthesis and evaluation) to an area of knowledge; others, such as Fisher 

(2001), emphasised the application of logic to critiques and arguments; others, such as Cottrell 

(2011), viewed critical thinking in terms of a collection of component skills; others have taken an 

overview perspective. Of these overview perspectives, perhaps the best recognised is that of Ennis 

(1989) who defined critical thinking as “reasonable and reflective thinking focused on deciding 

what to believe or do” (p. 4). 

 Ennis (1989) also characterised different views on whether critical thinking differs 

according to the subject area to which it is applied, leading to different implications for the way it 

should be taught. Firstly, the epistemological subject specificity view holds that good thinking has 

different forms in different subject areas. The National Council for Excellence in Critical Thinking 
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(2013) appears to adhere to this view, having stated that 

 

instruction in all subject domains should result in the progressive disciplining of 

the mind with respect to the capacity and disposition to think critically within that 

domain. Hence, instruction in science should lead to disciplined scientific thinking; 

instruction in mathematics should lead to disciplined mathematical thinking; …and 

in a parallel manner in every discipline and domain of learning. 

 

Secondly, the conceptual subject specificity view argues that generic critical thinking is impossible 

because thinking is always applied to something. Bailin (2002) supported this view within the 

context of science education, encouraging its application through “focusing on the tasks, problems 

and issues in the science curriculum which require or prompt critical thinking” (p. 370). However, 

common to both these views is the requirement to understand the nature of knowledge within a 

discipline before critical thinking within it can be understood. 

 The nature of mathematical knowledge can be seen as a special case of scientific 

knowledge due to mathematics’ position as “queen and servant of the sciences” (Bell, 1951): queen 

in the sense of being the abstraction of the concepts, objects and procedures used in other areas of 

science, and servant in the sense that all science disciplines use mathematics to present knowledge. 

There is considerable debate amongst philosophers on the nature of scientific knowledge (Eflin et 

al., 1999), which includes issues such as the unity of science, the demarcation of science from 

other subjects and whether scientific paradigms are consistent or contradictory. Regarding the 

nature of learning activities, Pask (1976) differentiated physical sciences from the arts and social 

sciences. He defined the former as operational style, which Ramsden (1997) summarised as “the 

manipulation of concepts and objects within the subject-matter domain, the emphasis on 

procedure-building, rules, methods, and details” (p. 209). Pask defined the latter as comprehension 

style, which Ramsden (1997) summarised as “the description and interpretation of the relations 

between topics in a more general way” (p. 209). His differentiation implies there is much less 

scope for analysing, evaluating and interpreting ideas within physical sciences. 

 In general terms, there are fundamental distinctions between a mathematical assertion that 

is universally accepted being true, a formal argument demonstrating that it is true and a reader of 

such an argument both intuitively “seeing” it is true and being convinced it is true by the argument 

provided. A simple example is Pythagoras’ Theorem, which is universally accepted as true but a 

proof is seldom provided (see http://www.mathscentre.ac.uk/video/1090/ for an intuitive 

argument). 

 The nature of mathematical knowledge has been the subject of extensive philosophical 

debate for over a hundred years. Its foundation is largely attributed to Frege (Kitcher & Aspray, 

1988). He also led the debate from which the three main positions for viewing mathematical 

knowledge were established: logicism, which views mathematics as a logical system, the main 

work being Whitehead and Russell’s Principia Mathematica (1910-1913); formalism, which 

views mathematics in terms of provably consistent formal systems, the main protagonist being 

Hilbert (1926), and which led to the Bourbaki Programme of standard exposition of mathematics 

(Mashaal, 2006); and intutionism, developed by Brouwer (1948), which asserts that the 

fundamental properties of mathematical objects should be based on intuition rather than logic. 

According to Kitcher and Aspray (1988), these three main positions still dominate the argument 

today. 

 However, each of these positions shares the belief that mathematical knowledge is a formal 
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system of deduction whose axioms and rules can be precisely stated and followed. One construct 

is built upon another with formal proofs provided for any assertions. Results presented are either 

true or false and should be critically evaluated in these absolute, objective terms of validity 

(Goldin, 2003). Two famous examples are Russell’s letter to Frege just before his major work on 

mathematical foundations (Frege, 1903) went to press, which completely undermined it by 

identifying a logical flaw in his argument, known as Russell’s Paradox (Hersh, 1997, p. 148), and 

Wiles’ proof of Fermat’s Last Theorem (Singh, 1997), which was held up for over a year by a 

technical difficulty due to one minor oversight in his original (incorrect) proof. 

 Furthermore, there are additional forms of critical thinking in mathematics apart from the 

formal validation of mathematical arguments. Schoenfeld (1992) emphasised the need to develop 

effective mathematical thinking in the context of problem solving and metacognition. His approach 

aligns closely with the epistemological subject specificity view and the “deciding what to do 

[next]” (p. 4) aspect of Ennis’ (1989) definition of critical thinking. Schoenfeld (1992, p. 356) 

reported an experiment in which he compared the ability of college and high school students with 

that of staff mathematicians in solving non-standard problems. He found the latter spent much 

more time in analysis, exploration and planning, leading to much higher success levels from which 

he concluded that staff mathematicians were more adept at mathematical thinking in this context. 

 The focus of critical thinking in this article is on its use in the creation of advanced 

mathematical knowledge. From the epistemological subject specificity view, the main recognised 

work on critical thinking in this area is by the Advanced Mathematical Thinking Working Group 

of the International Group for the Psychology of Mathematics (Tall, 1991). In particular, in 

agreement with the observation made above, Tall (1991) recognised the importance of precise 

definitions and logical proof in advanced mathematical thinking, noting that “the move from 

elementary to advanced mathematical thinking involves a significant transition: that from 

describing to defining, from convincing to proving in a logical manner based on these definitions” 

(p. 20). Furthermore, consistent with the example of Pythagoras’ Theorem above, Dreyfus (1991) 

stressed the importance of being able to move between an intuitive understanding of an assertion 

and a formal proof that it is true. The purpose of this paper is to present techniques which have the 

potential to shed light on what mathematicians are thinking as they create and write up advanced 

mathematics. 

 

3. Evaluation of Existing Data Capture Techniques 
There are major problems with the use of traditional behavioural research techniques to capture 

data concerning advanced mathematical behaviour. Nardi et al.’s (2005) observational study of 

undergraduate mathematics tutorials is perhaps the most relevant, although the level of 

mathematics is slightly lower than that discussed in this paper. Observations are, however, time-

consuming to analyse and the completed analysis may not reflect what the students were actually 

thinking at the time, especially if they contributed little verbally, since most mathematical creative 

activity takes place in silence. 

 Other studies into the behaviour of working mathematicians have involved researchers 

conducting interviews (Burton, 2001) and focus groups (Iannone & Nardi, 2005) with 

mathematicians analysing mathematical texts (Burton & Morgan, 2000), video recordings of 

mathematical problem solving behaviour (Schoenfeld, 1985) or mathematicians providing 

personal reflections into their own behaviour (Poincaré, 1908). However, the use of each of these 

approaches for capturing advanced mathematical behaviour is problematic: most rely on 

mathematicians providing rationalisations of past behaviour which are subject to criticism of post-
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rationalisation and dissonance from thinking during the activity (Nisbett & Wilson, 1977). 

Schoenfeld’s (1985) video study of the mathematical problem solving process is very insightful, 

but this technique is not applicable to capturing advanced mathematical behaviour. Burton and 

Morgan’s (2000) textual analysis was applied to completed texts, representing the product of 

mathematical behaviour, rather than its process. In summary, these techniques are either not 

applicable to capturing the behaviour of research mathematicians or inappropriate for capturing 

their processes of creating and writing up advanced mathematics—see Table 1. 

 
Table 1 Comparison of Existing Behavioural Research Techniques for Investigating Advanced 

Mathematical Behaviour 
Data 

capturing 

technique 

Example 

Applicable to 

research 

mathematicians 

Captures the 

mathematical 

creative process 

Captures the 

mathematical 

writing process 

Observation 
(Nardi et al., 

2005) 
No No No 

Interview (Burton, 2001) Yes No No 

Focus group 
(Iannone & 

Nardi, 2005) 
Yes No No 

Textual 

analysis 

(Burton & 

Morgan, 2000) 
Yes No No 

Video 

analysis 

(Schoenfeld, 

1992) 
No Possibly No 

Reflection (Poincaré, 1908) Yes Not in detail No 

 

The possibility of an alternative approach appears to be difficult. The complexity of 

analysing mathematical behavioural data provided by interviews and textual analysis, and the 

underlying complexity of the phenomena they describe, may have discouraged researchers in 

mathematics behaviour from seeking to obtain more authentic data due to the belief that the 

analysis of such data might be even more resource intensive and complex. For example, the direct 

observation of mathematicians doing mathematics would be intrusive and might require a long 

period of time. Another underlying assumption is that research into the working practices of 

mathematicians must be initiated by researchers into mathematics behaviour; mathematicians are 

generally treated as research subjects according to the classical positivist research paradigm. 

Iannone and Nardi’s (2005) co-researcher approach is an exception. They adopted an 

interpretive paradigm, treating mathematicians more equally by exploring the conditions under 

which mutually effective collaboration between mathematicians, such as those they enlisted, and 

researchers in mathematics education, such as themselves, might be achieved. However, their use 

of prepared data sets and focus groups is very different from the one proposed here. On the whole, 

researchers in mathematical behaviour initiate research studies and generally consider using only 

the data capturing techniques with which they are familiar from other contexts. 

 One possible solution would be for research mathematicians to carry out ethnographic 

studies into their own behaviour. However, very few research mathematicians have either the 

capability or the interest to carry out an objective analysis into their own research processes. Such 

an approach has been described by Anderson (2006) as analytical autoethnography, in which the 

researcher is “a full member in the research group or setting, visible as such a member in the 

researcher’s published texts” (p. 375) (in this case, the mathematics research community) and 

“committed to an analytic research agenda focused on improving theoretical understandings of 
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broader social phenomena” (p. 375) (in this case, the mathematical behaviour research 

community).  

 Two examples of autoethnographic studies are Tall’s (1980) account and reflections of his 

discovery in infinitesimal calculus and Chick’s (1998) application of the Structure of the Observed 

Learning Outcome taxonomy (Biggs & Collis, 1982) to her doctoral research in abstract algebra. 

Whilst both studies provide interesting insights into the process of creating mathematical 

knowledge, the lack of other similar or follow-on studies in the last 35 years illustrates the 

difficulty and rarity of this combined identity approach. The single identity approach of a 

mathematician as a transcript provider is easier for mathematicians to achieve and provides more 

detailed data. Therefore, it has a greater potential to provide more data of a richer quality, enabling 

researchers in mathematics behaviour to gain greater insight into the thought processes of 

mathematicians as they create mathematics. 

 

4. The Mathematical Creative Process and the Writing Process 
 

4.1 Process Models 

Poincaré (1908) proposed a four stage model of mathematical creativity based on introspections 

on his own mathematical behaviour: preparation—conscious work on a problem, incubation—

unconscious work, illumination—a sudden gestalt insight, and verification—another phase of 

conscious work to shape the insight (hereafter, his model is referred to as Poincaré’s Gestalt Model, 

as a gestalt insight is its distinctive feature). At the time, mathematicians disagreed with Poincare’s 

approach, as it was seen as a departure from rigour, leading in part to the Bourbaki Programme; 

however, this view is no longer mainstream (Senechal, 1998). 

 Poincaré’s model is now widely accepted as the starting point for describing the creative 

process in general (Lubart, 2001). Hadamard’s (1945) reflections on mathematical creativity are 

in close agreement with Poincaré’s, whereas Ervynck (1991) suggested a three-stage model: a 

preliminary technical stage; algorithmic activity; and creative (conceptual, constructive) activity. 

However, a recent detailed study of the working practices of mathematicians by Sriraman (2004) 

showed strong agreement with Poincaré’s Gestalt Model and Hadamard rather than Ervynck’s 

model. Therefore Poincaré’s Gestalt Model is adopted within this paper. 

 The writing process has also been characterised by a model containing sub-processes. 

Based on a literature review of previous studies, Humes (1983) proposed four such sub-processes: 

planning—generating and organising content and setting goals; translating—transforming 

meaning from thought into words; reviewing—looking back to assess whether what has been 

written captures the original sense intended; and revising—in which the writer can do anything 

from changing his/her mind, leading to major reformulations, to making minor edits to his/her text. 

These sub-processes are generally enacted in the order given here but can overlap and be revisited 

later during the writing process, as illustrated in Figure 1. As Humes’ (1983) model is widely 

accepted, it has also been adopted within this paper (and is referred to hereafter as Humes’ Sub-

processes Model). 
 

4.2 Interrelationship 

Of the limited research into the relationship between the creation of mathematics and the creation 

of mathematical texts, perhaps most significant is that by Solomon and O’Neill (1998), who 

explored the relationship between mathematics and writing by considering the historical approach 

taken by mathematicians when the academic writing style was not dominant within the discourse 
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of the professional mathematical 

community. In particular, they 

investigated the writing style used by 

Hamilton (1843) in his discovery of 

quaternions, reporting how he 

demonstrated fluency in switching 

between an informal narrative style 

and a formal journalistic style when 

communicating his findings in the 

appropriate social or institutional 

context. They argued for the 

importance of teaching a correct mathematical writing style rather than a reliance solely upon 

narrative genres for those who may feel excluded from the dominant mathematical discourse. 

However, a more important conclusion from their research for the current study is that the narrative 

writing style has almost entirely been lost by mathematicians due to the dominance of the standard, 

product-orientated mathematical style in the contemporary academic discourse, to the detriment 

of research into the working behaviour of mathematicians.  

 The approach taken by most authors of books on mathematical writing agrees with 

Solomon and O’Neill’s (1998) recommendation to teach a correct mathematical writing style. For 

example, Vivaldi (2013) emphasised how to produce correct content according to the mathematical 

writing style. In addition, some authors provide limited contextualised advice on the mathematical 

writing process (Maurer, 2010). However, Aitchison and Lee (2006) dispute the adequacy of an 

emphasis solely on the mechanics of writing to account for the complexities of doctoral students’ 

writing, let alone the writing by professional researchers. Therefore, there remain underlying 

tensions among advice on a formal mathematical writing style for communicating results, writing 

process models to improve mathematical writing and a narrative style for communicating the 

mathematical process. 

 Despite these unresolved tensions, a number of observations can still be made into the 

connection between Poincaré’s Gestalt Model of mathematical creativity and Humes’ Sub-

processes Model of writing composition. Firstly, at least since the early Nineteenth Century 

(Caranfa, 2006), writing has been seen as a creative process. Therefore, due to the accepted general 

applicability of Poincaré’s Gestalt Model, it would be expected that all stages of this model be 

present within the writing 

composition process to some extent. 

 Secondly, Crowley (1977) 

observed similarities between some of 

the stages of Poincaré’s Gestalt Model 

and the sub-processes of Humes’ 

model: preparation and incubation are 

similar to planning; illumination is 

similar to translating; and verification 

is similar to revising and reviewing—

see Figure 2. However, writing at the 

verification stage of the mathematical 

creative process is more for personal 

understanding than for planned 

Figure 1. Humes’ Sub-processes Model of writing com-

position. 

Figure 2. Similarities between Pointcaré’s Gestalt Model and 

Humes’ Sub-processes Model when applied to writing 

composition. 
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communication with the mathematical community. Only if this activity has been successful and 

the mathematician decides it is sufficiently important to be communicated to the wider community 

will a second phase of translating (this time of the mathematical writing) be required. 

 Thirdly, and for the same reason as the second point above, the writing itself cannot usually 

be planned until the mathematical discovery has been completed, verified and reflected upon. 

Perhaps the most famous example of this is Wiles’ communication of his proof of Fermat’s Last 

Theorem (Singh, 1997), comprising his original lectures at Cambridge University; the slight 

problem he identified with his own argument; his subsequent over-coming of this problem and his 

publishing of a mathematical paper communicating his verified findings (Wiles, 1995). Therefore, 

in most circumstances, the stages of the mathematical creative process follow the sub-processes of 

the writing process. Figure 3 maps the four data capturing techniques proposed in this paper onto 

the mathematical creative process and the mathematical writing process. Table 2 provides more 

information on this comparison. These techniques will now be introduced and explored in turn 

through examples from my own doctoral research (Samuels, 2000). As already stated, the purpose 

of presenting these examples is to illustrate the techniques, rather than to analyse the meaning or 

significance of their content. However, they have been chosen carefully to exemplify potentially 

interesting critical thinking. 

 

  

 

 
Figure 3. Mapping of proposed data capturing techniques onto the mathematical creativity and writing 

process. 
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Table 2 Applicability of Proposed Data Capturing Techniques to the Mathematical Creative and 

Writing Processes 

Technique 
Static or 

dynamic 

Corresponding stage 

of the mathematical 

creative process 

Corresponding sub-

process(es) of the 

mathematical writing 

process 

Reference(s) to 

similar work 

Plan writing Static Preparation Planning 
(Pólya, 1945; 

Pugalee, 2001) 

Activity 

transcript 
Dynamic 

Notes made during 

activity could be 

written during 

preparation or 

verification 

Account of activity 

similar to translating 

but in a narrative style 

(Craig, 2011; Tall, 

1980) 

Concept 

map 
Static 

Any, especially 

preparation and 

incubation 

Any, especially 

planning and 

reviewing 

(Bolte, 1999; 

Kaufman, 2012; 

Lavigne et al., 

2008; Mac Lane, 

1986; Ojima, 

2006) 

Annotated 

draft and 

transcript 

Dynamic Preparation Reviewing (Eliot, 1971) 

 

5. Data Capturing Techniques 
 

5.1 Plan Writing 

Plan writing is used here to describe a data capturing technique by which a mathematician 

elaborates on a plan to create a certain mathematical result. An example is provided in Figure 4. 

The printed text formed part of a communication to my supervisor in which I provided him with 

an overview of my plan to create a particular proof of a result on the application of catastrophe 

theory (Poston & Stewart, 1978) to nonlinear wave theory (Whitham, 1974). The handwritten 

notes were for my own benefit after I met with my supervisor. The other pages of this 

communication are provided in Appendix A. This plan relates more to creating the mathematical 

content. Figure 5 provides an overview plan of the same process which I produced for my own 

benefit. It relates to both the mathematical creativity process (Level 1) and the mathematical 

composition process (Level 2). Figures 4 and 5 illustrate how different forms of plan are created 

for different purposes. Plan writing relates to the preparation stage in the mathematical creative 

process and the planning stage in the mathematical composition process. It is a static technique in 

the sense that it captures current thinking rather than changes in thinking. 

Very little has been written about capturing written mathematical plans as a data capturing 

technique. Pólya (1945) viewed planning as a vital step in mathematical problem solving. His 

description of this process is similar to the first stage in Poincaré’s Gestalt model of mathematical 

creativity. Pugalee (2001) used written mathematical plans as a technique to investigate Year 9 

students’ metacognition in mathematical problem solving. However, neither of these authors nor 

those who have built on their work, such as Schoenfeld (1985), appears to have promoted plan 

writing as a technique for mathematicians to communicate their advanced mathematical behaviour. 
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Figure 4. Example of plan writing. 
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Figure 5. Second example of plan writing. 

 

5.2 Activity Transcripts 

A mathematical activity transcript is a detailed account of a specific mathematical experience. It 

combines notes written at the time of the activity with an account of what the mathematician was 

thinking when he/she created these notes. It may also include other forms of writing, such as an 

introduction to the context of the experience and a reflection on the experience. Figures 6a to 6d 

provide four extracts from an activity transcript relating to non-linear wave theory: an introduction, 

written 8 days after the activity; notes written during the activity; an account of the activity, also 

written 8 days after it occurred; and a review or reflection, written about 3 weeks later. The whole 

activity transcript is provided in Appendix B. Figures 6b and 6c include a mistake which was 

discovered only during the reflection, in Figure 6d. This has been included to illustrate how actual 

mathematical activity sometimes contains mistakes which may be corrected at a later stage. Due 

to the multiple nature of its content, an activity transcript relates to the incubation, illumination 

and verification stages in the mathematical creative process. It is a dynamic technique, as the 

critical thinking of the mathematician is seen to change through the transcript. In essence, it 

captures the process of creating mathematics. 



Double Helix, Vol 2, 2014 

12 
 

 

Figure 6a. Background statement relating to the example of mathematical activity. 

 

 

 

Figure 6b. Extract from the mathematical transcript. 
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Figure 6c. Narrative for the mathematical transcript. 

 

 

 

Figure 6d. Reflection on the mathematical activity. 
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Compared with Tall’s (1980) account of his discovery of a new mathematical concept, 

activity transcripts are more detailed and more integrated as a single document describing a single 

event. Consistent with Figure 6d, he recounted making many small errors during his discovery 

process. Regarding the danger of post-rationalisation, he stated, “I am very suspicious of 

mathematicians who recall how they did research without taking careful notes at the time” (p. 24). 

The detailed original notes form the basis of activity transcripts, increase the accuracy of the post 

rationalisations made in the accounts of the experiences and reduce the applicability of Nisbett and 

Wilson’s (1977) criticisms of the accuracy of verbal reports on mental processes. 

Craig (2011) recently used journals of problem solving activities with first year 

mathematics undergraduates. The students were asked to write explanatory paragraphs of their 

problem solving behaviour. These were analysed using Waywood’s (1992) classification of 

student mathematical journal entries: recounting—reporting what happened, summarising—

codifying and organising content, and dialogue—showing an interaction between ideas. Craig 

found a strong correlation between the journal entries and Waywood’s classification scheme. She 

also deliberately included an example containing a mistake. The approach taken in Figures 6a to 

6d are a combination of recounting (in the transcript notes themselves and the account) and 

dialogue (in the reflection). 

In the wider scientific context, a famous example of an activity transcript is Faraday’s diary 

(1932-1936), containing transcripts of his original notes whilst retaining his original illustrations. 

Parts of these have been analysed by researchers. For example, Gooding (1990) devised a formal 

language for investigating the creative process by which Faraday discovered the electric motor. 

However, the scientific discovery process is slightly different from the mathematical one as it 

generally requires constructing apparatus and carrying out experiments in order to test hypotheses. 

Furthermore, West (1992) asserted that Faraday’s particular approach may be attributable to his 

being dyslexic and thus not generalizable to an understanding of the nature of scientific creativity. 
 

5.3 Concept Maps 

According to Novak and Cañas (2008), concept maps are 

 

graphical tools for organizing and representing knowledge. They include concepts, 

usually enclosed in circles or boxes of some type, and relationships between 

concepts indicated by a connecting line linking two concepts. Words on the line, 

referred to as linking words or linking phrases, specify the relationship between the 

two concepts. (p. 1) 

 

However, according to Gaines and Shaw (1995), the term concept map is used to “encompass a 

wide range of diagrammatic knowledge representations” (p. 334); they went on to provide a more 

formal definition of a concept map which is beyond the scope of this paper. In any case, the practice 

of using concept maps is often different from formal attempts to define what they are. 
 In addition to Novak and Cañas’ (2008) statement above, the linking lines between 

concepts are sometimes directed using arrows. Groups of concepts are sometimes identified by 

drawing a shape around them, such as a rectangle, and also labelled. The naming of a link between 

two concepts can be interpreted formally as a predicated proposition of the form 

LinkName(Concept1, Concept2). The physical proximity of concepts can also be seen as implying 

an association between two concepts (Simone et al., 2001). 

Concept maps are easy to create but are often dismissed by academics with a “traditional 
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dualistic orientation” (Hung, D., Looi, C.-K., & Koh, T.-S., 2004, p. 193) as lacking objective 

interpretation. However, as Gaines and Shaw (1995) observed, all knowledge is subject to 

interpretation by a reference community, and “there is an exact parallel between natural language 

and visual language—the abstract grammatical structure and their expressions in a medium take 

on meaning only through the practices of a community of discourse” (p. 335). However, this is 

disputed by Hoey (2005), who claimed that corpora are “central to a proper understanding of 

discourses as a whole” (p. 150). The subject of corpora is revisited in Section 6 below. 

 Whilst concept maps are used for different purposes, the purpose relevant to this paper is 

the visual representation and communication of tacit knowledge from experts about their domains 

of expertise. Examples of concept maps from my PhD thesis (Samuels, 2000) are provided in 

Appendix C. An example is not provided in the main paper, as they do not relate to the same piece 

of mathematics as the other three examples of the techniques presented in this section. They differ 

in degree of structure and breadth of knowledge content. All these maps were created for my own 

benefit to aid the representation and communication of mathematical knowledge. They can be 

created at the preparation and incubation stage of mathematical creativity because reflection on 

conceptual relationships could be seen as a precursor to a new mathematical discovery, such as 

Kaufman’s (2012) anthropological presentation of the discovery of a new duality transform. 

Generally, a concept map is a static data capturing technique. It can also be used in the planning, 

translating and reviewing sub-processes of the composition process (see Figure 11 below). 

Concept maps are common in secondary education, especially in science (Novak & Cañas, 

2008). Bolte (1999) suggested they could be used as a complementary assessment technique in 

undergraduate mathematics. More recently, Lavigne et al. (2008) used them as a research tool to 

investigate students’ mental representations of inferential statistics. Mac Lane (1986) used concept 

maps to describe the interconnection between concepts in different areas of mathematics. 

Otherwise, the use of concept maps by research mathematicians is rare. Concept maps also relate 

to the writing process, especially pre-writing (Ojima, 2006). 

 The Structure of the Observed Learning Outcome (SOLO) taxonomy provides a knowledge 

representation similar to concept maps, known as response structures. Within this taxonomy, 

concepts are labelled in different types: data or cues, concepts or processes, abstract concepts or 

abstract processes, and responses. The structures created are more dynamic and represent the way 

an individual’s conceptual understanding develops over time. Chick (1998) applied the SOLO 

taxonomy to her doctoral research in abstract algebra. However, concept maps are promoted here 

because they are perceived as being more practical for research mathematicians to understand and 

use. 

 

5.4 Annotated Drafts and Transcripts 

The final data capturing technique introduced in this paper is an annotated draft and transcript. The 

idea for this technique was derived from the version of T.S. Eliot’s (1971) poem The Waste Land 

edited by his first wife, who made facsimile copies of the pages of the original draft, numbered the 

lines and then transcribed both the draft and the different annotations on the opposite page. My 

approach is based on annotations I made when re-reading extracts of my own internal reports. I 

have numbered the lines and transcribed all the comments but not the original text (as this was 

already typed). Each page of the extract begins with a list of the variables introduced thereon in 

order to provide a measure of the working memory load required by the reader. 

 An example page of an extract is given in Figure 7 with its transcript given in Figure 8 

(note the emotional reflection written next to Lines 1 to 4 and the “seeing” in the comment next to 
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Line 17). The whole of this extract and its transcript are provided in Appendix D (note: “Report 

4” to which this extract refers is (Samuels, 1989)). Whilst annotating drafts is not a new idea, their 

use in capturing critical thinking in the composition of advanced mathematics is believed to be 

new. As with Eliot’s (1971) facsimile and transcript edition of his draft, of particular relevance is 

the social context in which the drafts are created. 

 

 
Figure 7. Example annotated draft. 
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Figure 8. Example transcript of annotated draft. 

 

The annotated draft and transcript technique is dynamic and clearly fits in with the writing 

sub-process of reviewing. However, it could also be appropriate for the preparation stage in the 

mathematical creativity process if the draft text needs to be improved substantially. This was 

certainly the case with my reflections on my internal reports. Part of the final proof relating to the 

extract provided in Figures 7 and 8 is given in Figure 9. The whole of the deductive form of the 

proof is provided in Appendix E. The content of the final version of the proof looks very different 

from that in the internal report. 

Whilst the publication of results within internal departmental reports may not be so 

common, it is usual for mathematical ideas and results to be communicated first in an informal or 

semi-formal setting before they are submitted to and published in journal articles. Therefore, an 

annotated draft and transcript approach may be widely applicable to mathematical creativity and 

writing. 

 

6. Discussion 

The purpose of this paper has been to present four practical techniques which enable 

mathematicians to capture and communicate their critical thinking processes when creating and 

composing advanced mathematical knowledge. The use of these techniques requires a shift in 
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mmmFigure 9. Extract from final published version of proof. 
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perception of the role of mathematicians from research subject or co-researcher in research 

initiated by a behavioural researcher to transcript provider. Furthermore, their use is not in 

opposition to traditional mathematical creative activity and the standard, product-orientated 

mathematical writing genre but rather they can work alongside them, enabling mathematicians to 

express their thinking processes and recapture the narrative writing style that was common in a 

previous age (Solomon & O’Neill, 1998). 

 All four of these techniques are relatively easy to use, making them practical and accessible 

to mathematicians. As the information is coming directly from the mathematicians and relates to 

their actual creative and writing processes, these techniques are more appropriate and have a 

greater potential to provide accurate data on critical thinking than the traditional data capturing 

techniques used by behavioural researchers outlined in Section 3. The two dynamic techniques, 

activity transcripts and annotated drafts and transcripts, emphasise the importance of capturing 

detail, potentially leading to accurate post-rationalisations. In particular, activity transcripts are 

promoted because they have the potential to capture detailed thought processes during the 

mathematical creative process. 

 This paper has explored the nature of critical thinking in an advanced mathematical 

context. Critical thinking in mathematics is fundamentally good mathematical thinking, which 

primarily is being able to create and identify mathematically correct arguments. Whilst it has not 

been the purpose of this paper to analyse the critical thinking within the examples of the proposed 

techniques, the correction of a mistake in Figures 6b, 6c and 6d illustrates it. The examples 

provided also illustrate some of the other forms of critical thinking in mathematics discussed in 

Section 3, such as deciding what to do next when creating mathematics, “seeing” results intuitively 

and planning both mathematical activity and mathematical writing. 

 A theme common to the examples of these techniques provided is the importance of the 

social context in which they have been created. Therefore, in order to encourage other 

mathematicians to engage socially with these techniques, creating a corpus of advanced 

mathematical process data which mathematical behavioural researchers can study is proposed. The 

figures in this paper and the supplementary data supplied in the appendices are my initial 

contribution to such a corpus. Such an approach would be similar to that taken in the Digital 

Variants corpus (Björk & Holmquist, 1998) (http://www.digitalvariants.org/) which enables living 

authors to present texts created at different stages of the writing process. Wolska et al. (2004) 

created a corpus of tutorial dialogs of people with different levels of mathematical ability proving 

theorems in basic set theory. The data provided with this paper, especially the process of creating 

a deductive proof applying catastrophe theory to nonlinear wave theory, could form a joint research 

study with mathematical behavioural researchers. Finally, at the meta level, Figure 10 below is a 

hybrid of a writing plan and a concept map I produced during the process of creating this paper. 

http://www.digitalvariants.org/
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Figure 10. Hybrid writing plan/concept of this paper. 
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Appendix B 
 

Whole Example Activity Transcript 
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Examples of Mathematical Concept Maps 
 

 



Double Helix, Vol 2, 2014 

40 
 

 
 



Double Helix, Vol 2, 2014 

41 
 



Double Helix, Vol 2 (2014) 

42 
 

 
  



Double Helix, Vol 2 (2014) 

43 
 

Appendix D 

 

Annotated Draft and Transcript of Entire Extract 
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