23 Electronic Communities in Philosophy Classrooms

Gary L. Hardcastle
Virginia Polytechnic Institute and State University

Valerie Gray Hardcastle
Virginia Polytechnic Institute and State University

The Problem

There are at least two problems with traditional lecture courses. First, significant numbers of students find this format intimidating and consequently neither ask questions nor offer comments. Formal written work suffers as a result, for students put a greater effort into courses in which they feel they are significant participants. The lack of fruitful dialogue (both oral and written) is of special concern in a humanities course, where intellectual exchange is supposed to occur. In particular, philosophy courses are dialectic; their goals are to raise questions and acquaint students with issues. Intellectual transformation—not skill development—is the typical aim.

Second, traditional lecture courses make it difficult to accommodate the extraordinary range of student readiness and the variety of learning styles. Most students in our introductory courses have had no previous exposure to philosophy, and while some find the pace too fast, others find it too slow. Many fall by the wayside as a result: drop rates of 20 to 30 percent and failure rates of 8 to 12 percent are not uncommon. Variations in background and learning styles have been addressed in the past by attending to students individually, but this is not feasible in a large lecture course.

Such concerns are familiar, but in 1994 at Virginia Tech we found ourselves facing them squarely. As a humanities department in a land-grant university of 23,000 students, and one recognized for the education of future engineers, our introductory philosophy courses have always figured prominently in the undergraduate core curriculum and enjoy high demand. But when, in 1994, state-mandated budget cuts coincided with a renewed emphasis on teaching excellence, many members of our department found themselves standing not in classrooms of twenty or thirty students, but rather before audiences of two hundred, with
the additional expectation that the teaching of these students would be improved. The familiar problems of the large lecture format became pressing; we simply had to teach more students more effectively.

Our Approach

Our approach to the problem was, and continues to be, extensive use of computer-supported communication (CSC) in our philosophy classes. Several factors contributed to this decision. Budgetary factors and the fact that we continued to be a research department precluded two obvious solutions: hiring new faculty or graduate teaching assistants, or increasing our teaching load. Our department-wide belief that philosophy classes could not be taught purely as lecture courses barred the elimination of discussion from our classes. Most significantly in retrospect, though, was an initiative of Virginia Tech’s Office of Educational Technologies, which placed in the offices of Tech faculty fast Apple computers connected to the Internet via Ethernet. Simultaneously, initiatives of Tech’s Computing Center and the Blacksburg Electronic Village, a consortium devoted to promoting electronic community in Blacksburg, quickly made our students and faculty among the best-wired university populations in the world. Shortly we and others at Tech began to ask if this technology, new to all of us, might help our courses.

The technological turn fit well with a pedagogical outlook which aimed to free students and faculty from a “credit-for-contact” model of instruction, which prizes the raw time teachers and students spend together in the same room. The concrete effect of the rejection of this model and the use of CSC has been philosophy courses centered upon a set of small ongoing electronic discussion communities through which students participate in conversations with peers, teaching assistants, and professors. Students are invited to read the contributions of other students in several electronic discussion groups and to contribute to the discussion themselves.

Specifically, we have developed a World Wide Web-based forum for our philosophy classes which we have termed the class “running commentary.” This running commentary consists of a series of Web pages which students may view with a Web browser from anywhere on the Internet, and through which students navigate to read other comments and submit their own. The main part of the running commentary is the “main menu” page (see Figures 23.1 and 23.2), which gives the students an opportunity to browse comments by forum or category, to browse the most recently submitted comments, or to submit their own comments.

The taxonomy of forums is flexible; we have oriented ours around class topics such as Free Will and Determinism. To contribute a comment, a student
This page is designed for my students to enter their own reactions and arguments regarding the course material as we move through various topics. In this way, they can actually participate in an on-going philosophical dialogue, which, after all, is the name of the game.

Participants should include in their comment what position they are arguing in support of or against, and their reasons for holding that position. Remember opinions are only interesting in virtue of their reasons for being held.

Enter your own comments.
Browse the comments by topic...
- review General Thoughts About the Course
- review comments about Knowledge of the External World
- review comments about Knowledge of Ourselves
- review comments about God and Faith
- review comments about Free Will and Determinism

or review comments entered...
- since you (that is, the machine) last checked
- in the last day
- in the last 3 days
- in the last week

Problems or questions? Let me know.

Figure 23.1. Running commentary menu page for Philosophy 1204.

completes a running comment entry form (see Figures 23.3 and 23.4). Although a student is prompted here for her name and e-mail address, the entry of an e-mail address is optional and any text string will serve as a first or last name. Thus the running commentary provides some degree of anonymity from other students, and from the instructor if the student uses a computer other than her own. Anonymity cuts both ways in this context—an issue we have addressed by providing information to our students about running commentaries. We caution students on an instruction page not to violate any official university honor codes or the standards of simple decency.

Note that from such comment pages students have the option of entering a reply which is then linked to the original comment. The effect is to create discussion “threads”—series of comments, each addressed to one that precedes it.
As is familiar to readers of newsgroups, this structure makes for easy identification of the comments in which one is interested (see Figures 23.5 and 23.6).

Once submitted, the new comment’s title appears in a listing of the comments which pertain to a given topic. Over the course of the class, comments and their replies accumulate, and that accumulation comprises a philosophical discussion. This is the standard (and perhaps best) way to learn philosophical concepts: students take the ideas and issues presented to them by others, apply them in different contexts, and then through an exchange with their instructors and their peers, revise and refine their claims. The argument-counterargument-revision dialectic is the heart of philosophy itself.

It may help in describing our running commentaries to compare the idea to other instances of CSC. Most important, informal commentaries are asynchronous, meaning that the discussion does not take place in real time. Thus what we do is unlike a MOO or the increasingly popular real-time conferencing platforms, and more like a newsgroup or electronic discussion list. Unlike electronic discussion lists, however, running commentaries organize comments
around threads, preserve and organize comments on a central server, and do not require the use of e-mail. At the moment, USEnet-style newsgroups are less readily available for desktop platforms, while our running commentaries can be readily implemented on a variety of World Wide Web servers.

In many respects, our approach is not novel. Many teachers in other philosophy classes in other departments have used electronic discussion lists, e-mail, and Web pages. In most cases the pedagogical underpinnings of these efforts match ours—namely, the conviction that the exchange of real ideas among real people is essential to a philosophical discussion. We see our contribution as

Figure 23.3. Running commentary entry form for Philosophy 1204.
another way of promoting philosophical discussion without overburdening instructors.

Our goal in using running commentaries is not to eliminate personal interactions, but to transform and improve them. We want to nourish an intellectual community by providing an electronic "virtual campus" on which students and faculty can exchange ideas among each other in groups of various sizes. In this manner we aim to both break the credit-for-contact model and make it possible to have philosophical discussions in classes of over two hundred students.

The running commentary promotes this goal in another way: only the most confident can contribute to a class taught in a traditional lecture format, but on
Ways of Worship
by Jennifer Herman (5/1996)

Why is it that some people say they worship their God by praying on Rosary beads, or by praying in the direction of the sun (something like that)? What is it about our cultures that have brought up so many different patterns of worshiping a God? I know a lot of religions were created at different times in history. Is it due to their geographical location or a need for adjustments in believing? I mean as time goes by, people begin to see their own views don't they?

Here is a list of responses that have been posted to this comment...

- Mass (5/2/96)
- Necessity (5/2/96)
- many ways (5/2/96)
- I don't know (5/2/96)
- twine: I don't know (5/1/96)

If you would like to post a response to this comment, fill out this form completely.

Title of Response: _______________________

Author: ____________________________

Type your first name in the first box and your last name in the second box.

Response Text:

Figure 23.5. Sample running commentary for Philosophy 1204.

the Internet one can participate more freely. Our students recognize this on occasion:

Just a few moments ago I got off of the [computer] . . . and I must say that it is worth the time to get to talk to someone and express your ideas without having to sound like a crazy and be embarrassed. It is not just talking to a computer also. It was like I was talking face to face to someone but not actually knowing who they were. I recommend that everyone try this out.

At the beginning of class . . . I was a little intimidated. But, after the initial shock I was rather excited. . . . [This] gives students the chance to really be
Electronic Communities in Philosophy Classrooms

Creationism Debate
submitted by Anonymous Och at 11:13 PM, 1/3/96

In the ongoing debate between creationism and evolutionism, isn't there a group that believes a little of both, and not exclusively one or the other? Is it possible that both themes are correct?

Figure 23.6. Sample running commentary for Philosophy 2605.

...heard. Not only by the teacher but other students as well. Don't you think that well outweighs just sitting in a class wanting to say something but there are ten other hands up and only fifty minutes in class?

As we sometimes express it to our colleagues, we aim to foster sophisticated written conversations to which the tongue-tied, the shy, the unfashionably dressed, and the easily intimidated will contribute equally.

The Web orientation of our courses has brought some ancillary benefits worth mentioning here. For example, because the course "takes place" on the Web, it is easy to arrange for students to download other supplementary materials. We maintain our syllabi, lecture notes, and homework assignments on homepages
for courses such as Epistemology, Knowledge and Reality, Introduction to Humanities, Science and Technology, Reason and Revolution, Philosophy of Mind, and Pragmatism and Logical Positivism.

The advantage of using electronic storage instead of photocopied packets, beyond cutting lead times and saving student money, is that it allows the instructors to include additional materials as the need arises. Professors can make available documents that pertain to the interests of the particular class instead of trying to second-guess how their class will unfold before it ever meets. For example, in one course, discussions of the Internet and its relation to various philosophical theories of community became important. Coincidentally, that spring *Time* magazine published a special issue devoted to the Internet and the changes it might bring about, including of course changes in our society. A few phone calls to *Time* made it clear that the issue would not be on the shelves for several weeks (subscribers had received it early), and so it seemed that our class would miss the opportunity to incorporate that issue of *Time* into the week’s readings. Until, that is, a student thought to search the World Wide Web and discovered that the entire issue, including graphics and advertisements, had been placed on line by *Time*. The issue was linked directly to the course page, and as a result everyone in the class had easy and immediate access to the entire issue.

This sort of freedom is important for class discussion, since even though different discussion-based classes may read the same materials, they rarely focus upon the same ideas or follow them up in the same ways. In short, the Web lets instructors be sensitive to the ebb and flow of the various discussion groups, thus encouraging further exploration of the ideas raised.

The Web also lets us easily connect students to various electronic resources related to philosophy, including glossaries, bibliographies, discussion groups, and historical information of high quality, that are not available in libraries. For examples of how these resources can be pulled together as a research tool for students, see the Mind/Brain Resources page and the Philosophy of Biology homepage. The Web has allowed us to introduce students to the worldwide philosophical community in a “user-friendly” format, thus painlessly expanding their intellectual contact with various academic groups and promoting greater intellectual participation with their cohorts worldwide. One student, as he realized that his material could be read by anybody in the world, began ending all of his commentaries with:

Attention reader: I am a . . . student who is working to understand philosophy of biology and develop my own views on some major issues in philosophy of biology (and to a lesser extent philosophy of science). As such, these . . . [contributions] should be considered works in progress. Any comments regarding content, from basic misunderstandings on my part to reactions to my arguments, would be greatly appreciated. Please e-mail comments and questions to me at [e-mail address omitted].
Our use of the Web in promoting written communication in class has not been limited to Running Commentaries. In Knowledge and Reality, Philosophy of Mind, and Pragmatism and Logical Positivism, students also submit brief informal essays via the Web. In Knowledge and Reality and Philosophy of Mind, in addition to standard formal essay assignments and the Running Commentaries, students respond to a set of short questions for each week’s worth of readings by entering their answers directly onto a Web “form” and then e-mailing their answers to their instructor with a keystroke. The instructor responds by e-mailing the correct answers to the student. In this way, the students receive feedback on their work while it is fresh in their minds and they are prepared to engage in the class electronic discussion. In Pragmatism and Logical Positivism and Philosophy of Biology, students are simply required to respond to a more general set of questions about the week’s readings. These weekly class contributions then form the basis for a portion of that week’s online discussion.

These electronic repositories and homework assignments enable us to move definitions, textual exegesis, brief explanations, and recapitulations out of the lectures and into the context of written discussions. Appropriately prepared study questions and electronic links to supplemental material would supplement this. Answering study questions as one goes along increases retention and comprehension, better preparing the students for subsequent interactions. Ties to contemporary readings, illustrations, and issues help underscore the relevance of class work. Finally, hypertext links among materials posted to the Web allow for students who need additional help to get it without interfering with the progress of students who are further along.

Preliminary Results

While our evidence is typically anecdotal and not systematic, our preliminary results are very positive. With a mix of CSC and human instruction, it is possible to individualize and personalize the courses for our students while increasing the amount and quality of written class interactions. Since participants interact with one another through a medium both personal and public, communication and instruction can be tailored to meet individual needs. This flexibility allows the high achievers to accomplish more and the low achievers to get the attention they require, all without demanding that students with incompatible learning styles be thrown together in lecture classes and forced to endure instruction designed for someone else. This more holistic approach has resulted in a more significant classroom experience; in one current way of putting it, it is more “meaning-making” for the student. As one student in Philosophy 1204 wrote:
I have to admit that when I first learned that we had to do a computer assignment . . . I was dreading it . . . I was actually surprised when I first entered the [Web site] . . . Most all of the entries and responses have been so interesting. I am just amazed at this whole . . . process . . . Surprisingly, I have even logged on to the Internet just for fun—if that is what you want to call it!

I am excited about this class because it is the first class I get to work on the Internet with. I think this is great to be able to converse with other class members through computers because one does not really get to talk with each other in class.

On the face of it, the Web format encourages participation, for students can access the course materials at any time. At any time of the day or night a student can submit an original commentary; similarly, the instructor or other students can read and respond to the submitted commentaries at any time. With the Web one has the immediacy of a telephone call but the freedom of a written letter to read, compose without pressure, and respond to when desired.

Furthermore, the wide visibility of contributions to this community means that a certain degree of peer judgment directed toward all aspects of a contribution is inescapable. We have observed that students in these courses tend to be better spellers and grammarians, and are especially more coherent. They must write, and, “before” their peers, they write more carefully. But they don’t have to hurry, or to worry about their voices. This sort of electronic community changes the pressures on students; it does not remove them. Our experience indicates that, overall, better writing results.

Finally, by altering the social patterns that govern the hesitant exchange of ideas, faculty develop new and better skills for sharing information. In lecture courses certainly, these technologies drastically change the classroom dynamic. We have become participants, rather than more detached (albeit expert) lecturers, guiding our students to their own ideas and specializations. Lectures complement the electronic interactions by informing student discussion and setting the intellectual agenda, while allowing the students to take the initiative in their Running Commentaries and pursue avenues that interest them. We lead classes now solely to create a framework for student discussion to fill in and flesh out.

What follows are some excerpts from student commentaries submitted during the spring 1996 semester of Knowledge and Reality that illustrate just how students can teach and learn from one another, if given the chance and venue. In particular, notice that the students raise the issues they want to pursue and then try to sort them out among themselves; we only assigned the relevant readings.

Simulations: Real or Not? (3/21/96)

... It is obvious why many people believe computers to be intelligent and in many cases alive. This is because they produce answers identical to that of
humans. For instance a computer may talk back to you with simulated reasoning and show simulated emotions. But Searle points out that we must not fall into this trap of simulation, believing the computer to be alive just as we would not feel wet when in a computer simulated flood or become hot in a computer simulated fire, although this flood and fire are identical to the real occurrence.

Could Feel It (3/22/96)
If the simulation were real enough, our mind would be tricked into thinking it was real. Therefore, if we were in flood simulation and to our mind everything was simulated to perfection I think we would then feel wet. The Holodeck on Star Trek is a simulation, and even though that is just TV, if we were to create something that real, what happened inside would feel real.

Virtual Reality (3/25/96)
. . . Virtual reality in itself is a simulation of life. Could people “live” in a computer world and not be able to tell the difference between the computer world and the real world?

Similar (4/17/96)
I also can see why some believe computers to be human, but there are several things which cannot be simulated. For instance, a computer can sense heat but cannot feel pain. It can simulate the feeling of pain and show signs of the pain, but this is not the same as a human feeling pain.

Programs, Brains, Same Thing! (3/22/96)
. . . So, here’s a more interesting question . . . let’s not ask if machines can duplicate human behavior, but rather, are we simply machines by the definition everyone has been giving in this class? After all, it seems as though everything we think and do is based merely on an extremely powerful processor running constantly that interprets and refines as it goes along. . . . Perhaps we need to modify our definition of “human” and “machine” to distinguish a bit less, instead of more.

Here you can see the refinement of initially cloudy ideas in light of reflective discussion, which, as we mentioned earlier, is the traditional way of learning philosophical material.

In sum, we have observed that using CSC in our introductory philosophy courses:

- makes more efficient use of our physical, technological, and human resources by reducing temporal and spatial constraints on class time while nurturing more and better student discussion and writing.
- improves the efficacy and increases the quality of our offerings in philosophy in the face of decreasing resources. We are able to reach more students more effectively in terms of developing the general skills of productive, self-paced learning. From our experience thus far, we believe our courses have direct payoffs in reasoning ability, reading and writing competence, and the ability to analyze new situations.
breaks the common pattern of student passivity engendered by the traditional lecture course which papers over mismatches between teaching and learning styles. Students are forced to be actively involved in and responsible for their own learning. In our courses, passive lecture attendance is not possible; students must log on and work. New technology will be used in support of an old educational goal: keeping the learning process in motion as much as possible for each individual student.

At its heart, philosophy is a dialectic among groups of people over cons. With CSC, our students can be true participants in this tradition, learning philosophy by doing philosophy. And this is just what every philosophy class aims to achieve.

Notes

1. Two years later, Tech’s computing facilities for undergraduates and faculty exceed those of most other colleges or universities. This puts us in an interesting position with respect to advising other philosophy teachers, for what we have done is at the moment technologically feasible for only a minority of teachers. Our response is to speak to the results of CSC use; the pitfalls of first-time CSC use in the philosophy classroom; and the problems that remain when hardware, software, and expertise are locally abundant.

2. Our implementation employs the Mac-specific acgi application NetForms, commercially available from Maxum Development at http://www.maxum.com. Our pages are served from two 7500/100 PCI PowerMacs with 16 MB RAM running WebStar 1.3.1, mirrored by our department’s 8500 PowerMac Server with 16 MB RAM. All HTML was composed by Gary and Valerie Hardcastle using BBEdit Lite 3.5.1, though in some cases we took advantage of the excellent examples offered by Maxum. Adobe Acrobat 3.0b1 was used to create the PDF files for the lecture notes. DropStuff 4.01 compressed handouts for student downloading. GIFs and backgrounds were created using Canvas 3.5, PowerPoint 4.0, Adobe Photoshop 3.0, GIF Converter 2.3.7, ColorMeister 1.3.5, and Transparency. Students at Virginia Tech generally use Netscape 2.0 as a browser.

3. This work has been supported by generous grants from the Funds for the Improvement for Post-Secondary Education and the Center for Excellence in Undergraduate Teaching at Virginia Tech.

Web Resources

“Knowledge and Reality Homepage.” http://mind.phil.vt/www/1204.html or http://www.phil.vt.edu/Valerie/1204/1204.html (mirror site)
“Mind/Brain Resources Homepage.” http://mind.phil.vt/www/mind.html
“Virginia Tech’s Philosophy of Biology Seminar Homepage.” http://mind.phil.vt.edu/biology/philbio.html
“Philosophy of Mind Homepage.” http://mind.phil.vt.edu/www/4204.html
“Pragmatism and Logical Positivism Homepage.” http://truth.phil.vt.edu/3024/3024.html
“Running Commentary Web Site for Knowledge and Reality Course.” http://mind.phil.vt.edu/1204Comment/1204Comment.html or http://www.phil.vt.edu/Valerie/1204/1204Comment/1204Comment.html (mirror site)
“Running Commentary Web Site for Pragmatism and Logical Positivism.” http://truth.phil.vt.edu/3024/commentaries/commentarymenu.html

Other Related Sites

“Teaching and Learning with Computers Discussion Group.” TLC@VTVM1.CC.VT.EDU
“Writing Across the Curriculum Discussion Group.” WRITE-L@VTVM1.CC.VT.EDU